## Welcome to Cengage

Would you like to be redirected to the site for United States?

Go to the site for United States

Stay on current Cengage siteWould you like to be redirected to the site for United States?

Go to the site for United States

Stay on current Cengage sitePrint £64.99

**MindTap** is a personalised teaching and learning experience with relevant assignments that guide students to analyse, apply, and improve thinking, allowing you to measure skills and outcomes with ease.

Now you can teach a rigorous, complete and integrated treatment of two essential subject areas in engineering mechanics -- statics and mechanics of materials -- with Goodno/Gere's STATICS AND MECHANICS OF MATERIALS, 1st Edition. This complete text helps you establish a strong foundation for further study in mechanics for mechanical, structural, civil, biomedical, petroleum, nuclear, aeronautical, and aerospace engineering students. The authors present numerous practical problems based on real structures, highlighting the information with state-of-the-art graphics, photographs and detailed drawings of free-body diagrams. All example problems and end-of-chapter problems follow a systematic Four-Step Problem-Solving Approach. Students will gain increased understanding of and proficiency in setting up, formulating efficient analytical models and then solving a variety of mechanics problems as they proceed through the text.

PART I: STATICS.

1. Introduction.

Chapter Objectives. Fundamental concepts: rigid and deformable bodies. Newton's Laws; law of gravitation. Scalars and vectors. Systems of units and conversion factors. Accuracy, approximations and significant figures. Using a Problem Solving Approach. Chapter Summary & Review. Problems

2. Forces, Moments, Resultants.

Chapter Objectives. Forces: 2D, 3D. Moments and couples: 2D, 3D. Chapter Summary & Review. Problems.

3. Equilibrium of Particles and Rigid Bodies: 2D, 3D.

Chapter Objectives. Free-Body Diagrams. Equilibrium in 2D and 3D. Dry friction.

Chapter Summary & Review. Problems.

4. Structural Applications.

Chapter Objectives. Introduction. Plane Trusses. Space Trusses. Frames and Machines.

Chapter Summary & Review. Problems.

5. Centroids, Center of Mass, Moments of Inertia.

Chapter Objectives. Introduction. Centroids of Areas, Lines and Volumes. Centroids of Composite Bodies. Center of mass, center of gravity. Theorems of Pappus. Moments of Inertia of Plane Areas and Composite Areas. Rotation of axes for moments of inertia. Principal Axes and Principal Moments of Inertia. Chapter Summary & Review. Problems.

6. Internal Effects in Bars, Shafts, Beams and Frames.

Chapter Objectives. Introduction. Bars subjected to axial loads. Shafts subjected to torsional moments. Beams and frames subjected to transverse loads and applied moments. Chapter Summary & Review. Problems.

PART II: MECHANICS OF MATERIALS.

7. Tension, Compression and Shear.

Chapter Objectives. Introduction to Mechanics of Materials. Normal Stress and Strain. Mechanical Properties of Materials. Elasticity, Plasticity, and Creep. Linear Elasticity, Hooke's Law, and Poisson's Ratio. Shear Stress and Strain. Allowable Stresses and Allowable Loads. Design for Axial Loads and Direct Shear. Chapter Summary & Review.

Problems.

8. Axially Loaded Members.

Chapter Objectives. Introduction. Changes in Lengths of Axially Loaded Members. Changes in Lengths Under Nonuniform Conditions. Statically Indeterminate Structures. Thermal Effects, Misfits, and Prestrains. Stresses on Inclined Sections. Stress Concentrations. Chapter Summary & Review. Problems.

9. Torsion.

Chapter Objectives. Introduction. Torsional Deformations of a Circular Bar. Circular Bars of Linearly Elastic Materials. Nonuniform Torsion. Stresses and Strains in Pure Shear. Relationship Between Moduli of Elasticity E and G. Transmission of Power by Circular Shafts. Statically Indeterminate Torsional Members. Torsion of Non-Circular Prismatic Shafts. Stress Concentrations in Torsion. Chapter Summary & Review. Problems.

10. Stresses in Beams.

Chapter Objectives. Introduction. Pure Bending and Nonuniform Bending. Curvature of a Beam. Longitudinal Strains in Beams. Normal Stresses in Beams (Linearly Elastic Materials). Design of Beams for Bending Stresses. Shear Stresses in Beams of Rectangular Cross Section. Shear Stresses in Beams of Circular Cross Section. Shear Stresses in the Webs of Beams with Flanges. Stress Concentrations in Bending. Composite beams. Chapter Summary & Review. Problems.

11. Analysis of Stress and Strain.

Chapter Objectives. Introduction. Plane Stress. Stresses and Maximum Shear Stresses. Mohr's Circle for Plane Stress. Hooke's Law for Plane Stress. Triaxial Stress. Plane Strain. Chapter Summary & Review. Problems.

12. Applications of Plane Stress (Pressure Vessels and Combined Loadings).

Chapter Objectives. Introduction. Spherical Pressure Vessels. Cylindrical Pressure Vessels. Combined Loadings. Chapter Summary & Review. Problems.

13. Deflections of Beams: Statistically Indeterminate Beams.

Chapter Objectives. Introduction. Differential Equations of the Deflection Curve. Deflections by Integration of the Bending-Moment Equation. Deflections by Integration of the Shear-Force and Load Equations. Method of Superposition. Statically Indeterminate Beams. Chapter Summary & Review. Problems.

14. Columns.

Chapter Objectives. Introduction. Buckling and Stability. Columns with Pinned Ends. Columns with Other Support Conditions. Columns with Eccentric Axial Loads. The Secant Formula for Columns. Chapter Summary & Review. Problems.

Appendix A: Mathematical Formulas.

Appendix B: Properties of Plane Areas.

Appendix C: Properties of Structural Steel Shapes.

Appendix D: Properties of Structural Lumber.

Appendix D: Deflections and Slopes of Beams.

Appendix E: Properties of Materials.

Answers to Problems.

Index.

- PHOTOGRAPHS AND ILLUSTRATIONS EMPHASIZE PRACTICAL ENGINEERING. Vibrant visuals throughout this edition highlight the significance of the subject matter as the authors address a broad range of engineering disciplines.
- 4-STEP PROBLEM-SOLVING APPROACH DIVIDES AND EXAMINES PRACTICAL EXAMPLE PROBLEMS. Solutions to example problems demonstrate a four-step Problem Solving Approach that dissects and analyzes the problem. Students learn to examine the results to ensure that th
- CONTENT PROVIDES EXCELLENT PREPARATION FOR FE EXAMS. More than 150 FE-type review problems focused on both Statics and Mechanics of Materials are presented in a separate appendix. These problems are representative of those appearing on past FE exams and c
- PRACTICAL EXAMPLES DRAW UPON REAL WORLD ISSUES. Realistic examples help students understand new and difficult concepts with ease. These problems heighten student interest while also demonstrating how basic principles of practical engineering can provide i
- HOMEWORK MANAGEMENT SYSTEM HELPS DIRECT AND ORGANIZE STUDENT PRACTICE. This helpful Homework Management System offers more ease of use, flexibility, and control than other similar books. Full solutions to more than 1,200 end-of-chapter problems are presen
- CLEAR AND ENGAGING EXPLANATIONS CLARIFY CONCEPTS. Interesting, current, and student-friendly examples guide students as they explore and practice the principles behind statics and mechanics of materials.
- LEARNING FEATURES GUIDE STUDENT REVIEW AND STUDY. Each chapter begins with a clear and concise list of Chapter Objectives and concludes with a Chapter Summary and Review of key formulas, illustrations, and findings. These valuable study aids help students

**Barry J. Goodno**

Georgia Institute of Technology

Barry John Goodno is Professor of Civil and Environmental Engineering at Georgia Institute of Technology. He joined the Georgia Tech faculty in 1974. He was an Evans Scholar and received his B.S. in Civil Engineering from the University of Wisconsin, Madison, and his M.S. and Ph.D. degrees in Structural Engineering from Stanford University. He holds a professional engineering license (P.E.) in Georgia, is a Distinguished Member of ASCE and an Inaugural Fellow of SEI and has held numerous leadership positions within ASCE. He is a member of the Engineering Mechanics Institute (EMI) of ASCE and is a past president of the ASCE Structural Engineering Institute (SEI) Board of Governors. He is also past-chair of the ASCE-SEI Technical Activities Division (TAD) Executive Committee and past-chair of the ASCE-SEI Awards Committee. In 2002, Dr. Goodno received the SEI Dennis L. Tewksbury Award for outstanding service to ASCE-SEI. He received the departmental award for Leadership in Use of Technology in 2013 for his pioneering use of lecture capture technologies in undergraduate statics and mechanics of materials courses at Georgia Tech. Dr. Goodno is also a member of the Earthquake Engineering Research Institute (EERI) and has held leadership positions within the NSF-funded Mid-America Earthquake Center (MAE), directing the MAE Memphis Test Bed Project. Dr. Goodno has carried out research, taught graduate courses and published extensively in areas of earthquake engineering and structural dynamics during his tenure at Georgia Tech. Like co-author and mentor James Gere, he has completed numerous marathons including qualifying for and running the Boston Marathon in 1987.

**James Gere**

Professor Emeritus of Civil Engineering, Stanford University, California

James Monroe Gere was Professor Emeritus of Civil Engineering at Stanford University. He earned undergraduate and master's degrees in Civil Engineering from the Rensselaer Polytechnic Institute in 1949 and 1951, respectively. Dr. Gere worked as an instructor and later as a Research Associate for Rensselaer between 1949 and 1952. He was awarded one of the first NSF Fellowships and chose to study at Stanford. He received his Ph.D. in 1954 and was offered a faculty position in Civil Engineering, beginning a 34-year career of engaging his students in challenging topics in mechanics, structural, and earthquake engineering. He served as Department Chair and Associate Dean of Engineering and in 1974 co-founded the John A. Blume Earthquake Engineering Center at Stanford. Dr. Gere retired from Stanford in 1988 but continued to freely give his time to advise students. He authored nine textbooks on various engineering subjects starting in 1972.

"Authors do a good job of introducing terminology, concepts, and methods incrementally, and backing them up with examples to solidify the concepts...Example problems are numerous and well chosen. Explanations of their solution are complete if at times a little lengthy…Graphics are well-thought-out and appropriate."

"The audience is recognized, the pace is good and the examples are appropriate and relatable…There is nice breadth and depth in the content and the problems, with a nice combination of theoretical and practical content."

X
### Cookies

We would like to place cookies on your computer to improve your viewing experience and help us make this website better.

By using our site you accept the terms of our Privacy Policy.

Okay, Thanks